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Data from analgesic clinical trials have characteristics such as or-
dered categorical longitudinal responses with repeated measures,
delay of effect with respect to analgesic plasma concentration, and
right-hand censoring of response due to remedication. In order to
determine the concentration-effect relationship of such data, we
propose convolving an empirical function for plasma concentration,
in the form of broken lines which connect each pair of neighboring
observations, with a monoexponential function, to generate *‘effect
site concentration.”’ Effect site concentration and time are used,
simultaneously, as independent variables in the fit of the model for
the logit of the probability of having a specific pain relief (PR) score
at each time point pre-remedication, via maximum likelihood. Using
corresponding effect site concentration, the probabilities of having
specific PR scores post-remedication are predicted via the concen-
tration-response relationship established. The overall (pre- and post-
remedication) predictions and corresponding standard errors for the
responses are then estimated. Inference of the PR scoring, using a
posterior method, is proposed. An illustration using real data is used
to demonstrate these methods.

KEY WORDS: analgesic; clinical trial methods; population pharma-
codynamics; mixed effects models; empirical convolution.

INTRODUCTION

This paper addresses the analysis of analgesic clinical
trial data, which have the following features: (i) the re-
sponse, level of pain or pain relief, is an ordered categorical
variable; (ii) the response is longitudinal and consists of re-
peated subjective measurements; (iii) response and plasma
drug concentrations are observed according to the same
sampling schedule and a delay between plasma concentra-
tion and effect exists; (iv) the response data are right-hand
censored due to remedication (by a known analgesic other
than the one under investigation); and (v) plasma drug con-
centrations are not censored. An introduction to analgesic
clinical trials can be found in proceedings edited by Max,
Portenov and Laska (1). Recently, Sheiner (2) proposed a
new analysis method, appropriate for such data, to estimate
the conditional probability distribution of having a specific
pain relief (PR) score, as well as to estimate the conditional
hazard of a discrete-valued survival time. He suggests that
the fitted models can be used to predict the unconditional
probability distribution using Monte Carlo simulation. As
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Sheiner points out, this information allows one to test effi-
cacy, and to obtain predictions of response given dose and -
time, both of which are required for regulatory purposes and
for optimal drug usage.

In this paper, we adopt Sheiner’s general approach, and
introduce several new aspects to provide researchers some
alternatives. First, we introduce a new model-independent
method, ‘‘empirical convolution,’’ for generating *‘effect site
concentration,”’ Ce(t). This procedure is not specific, per se,
to the data described above, but was used in our analysis.
Second, by assuming that within an individual the concen-
tration-response relationship post-remedication is consistent
with that prior to remedication, we introduce a method,
which does not require hazard for the time of remedication,
of estimating the overall predictions of PR score (given dose
and time) with corresponding standard errors. These stan-
dard errors enables comparisons of responses to be made.
Finally, we use posterior inference to rationalize the PR
scoring and the proposed estimation to assure the data-based
outcomes. This paper provides details of the methodology,
and gives an illustration of its application.

METHODOLOGY

For non-steady-state pharmacodynamic data, drug ef-
fect, Y(r), is often observed to be delayed with respect to
simultaneous drug concentration in (usually venous) plasma,
C(r). Convolving C(r) with exp(—k,f) to generate Ce(s) is a
widely accepted device to model such delays. Instead of
modeling C(f) parametrically, however, a semiparametric
method is employed to implement the convolution. This sub-
model is then fitted simultaneously with the entire pharma-
codynamic model.

First, we use broken lines which connect each pair of
neighboring observations to express the function for plasma
concentration, C(¢). If the k-th sample time, k=1, 2, -+, K.
in the i-th individual, i=1, 2, ---, I, of the j-th dose-level,
J=1,2, ===, J, is assigned to be t; with t,,=0, the k-th
observed plasma concentration in the i-th individual at the
J-th dose-level is Cy;, = C(1,;). One way to express the func-
tion Cy(?) is written as follows:

CAD = oy + Byl L — SISy, n

in which
Bix = [Cyltyn) — Cityg— o)V tyx — tija—n), 2
agr = Ciltin) — Byitijis 3)

fork = 1,2, -, K.

We then convolve C(r) with a monoexponential func-
tion, exp(—&,,f), to generate another function Ce(r), the so-
called “‘effect site concentration’ [cf. Fuseau and Sheiner
(3)). We use the term ‘‘empirical convolution’ to describe
this process. The empirical convolution is carried out as fol-

lows:

Ceyi(t) = keo jo " Ciilsexpl—keo(t — s)lds

k
= 2{(‘1ijh = ajir-pAl — expl—keolt — tijn-1)1}
h=1
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Table I. Number of Individuals Evaluated After a Single Dose of the
Analgesic and Prior to Remedication

Treatment
Time
(h) Placebo I unit 2 units 4 units

0.00 36 36 36 35
0.25 36 35 36 35
0.50 36 35 36 35
0.75 36 35 36 35
1.00 36 35 36 35
1.50 18 29 34 32
2.00 14 25 34 32
3.00 7 i9 31 31
3.50 6 16 30 28
4.00 6 12 26 24
S5.00 6 11 24 18
6.00 6 11 20 17

+ [Bij — Bijth-nHkeot — 1 — (keotijn-1y — 1)
expl—keolt — tijn-1)keo! €]
for ;4 1y <t =< t, in which ay=f,=0, and £, is the effect
site rate constant.
A logistic model [cf. Sheiner (2)], logit(F(y;;,)) =
g s 8, M), is used to estimate the cumulative distribution
function (F), in which Y, is the variable PR score in the i-th
individual of the j-th dose-level at the &-th time point, and y;,
is its realization. The logit is associated with the parameter
vector 0. The elements of interindividual variability are as-
sociated with the normally distributed vector 7.
Expressed mathematically, the cumulative probability
function is

Fyg; 8, m) =

eo

Pr( Y,'jk < Yijks 0, m)
explg vy 0, ML + explg (i 0, W},

439
Y = 0,1, 2,3, 4, for which
Pr(Y; <0;6,m) =0, 6)
and
Pr(Yz < 5;6,m) = 1. @)
In Eq. (5), we define
4 "
g s 0, m) = ,,,2:1 0,,0m ix) + 05 m
+ 6 E‘e% + My (8

in which 6 = k.., 0y, 05, 05,0,, 05, 0, 05, es)ls m=M
MNp1s "5 My 775 M), and the indicator function Q,,, (v;), m
= 1,2, 3, 4, is defined as follows:

L yig =m — 1, 9
Om i) = 0, otherwise. ©)
Thus, the probability of having a specific PR score is
PI’(Y,‘_,‘/\- = Yijks 0, m) = Pl‘(Y,’jk < yijk + 1;0,m)
— Pr( Ylj/\ < Yijks 9, T]) (10)

Note that Egs. (4-10) with the constraint of Ce(£)=0
for all ¢ is the model for the placebo data. The component
02/t + 05) produces a monotonic and saturable placebo
effect with respect to time [cf. Liu and Sambol (5)]. The
component 8,Ce,,/(Ce . + 85) is the contribution of concen-
tration to the logit, and also produces a monotonic and sat-
urabie (pure) drug effect with respect to Ce,.

Given the definition of the logit in equation (8), the prob-

(5) ability of having the observed PR scores at distinct times are
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Fig. 1. Individual plasma concentration versus time curves among different dose
groups. The solid lines indicate the plasma concentration-time curves for individual
subjects who received a 1 unit dose; the dashed lines are the plasma concentration-
time curves for subjects who received a 2 unit dose; and the dorred lines belong to

subjects who received a 4 unit dose.
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Fig. 2. Observed pain relief score versus concentration. The dotted thin lines are the
observed pain relief score versus plasma concentration curves, in the order of obser-
vation times, for individual subjects. The dashed thick line indicates the mean pain
relief score-mean plasma concentration curve. The solid thick line indicates the mean
pain relief score versus mean ‘effect site’ concentration curve. Arrows indicate the
order of observation times. Hysteresis seen with the observed pain relief score-
plasma concentration curves is partially corrected in the pain relief score versus
‘effect site’ concentration curve. The lack of complete collapse is expected, and may
be due to the censorship and an increasing time effect, as a part of the placebo effect,

Liu and Sambol

which has not been subtracted from the curve.

independent. Thus, the likelihood function of the data can be
written as follows:

Lo, w = [ [ tw an

ij.k

in which /;;, = Pr(0, w; Y, = y}) and y}, is the observed PR
score (pre-remedication). A nonlinear mixed effect model,
employing the software NONMEM, Laplacian method [see
Beal and Sheiner (4)], is used to minimize —2 iJZk log(l,,).

Based on the maximum likelihood estimates (£,,, 6 and
1), the first two moments of the empirical distribution of the
PR score [prediction (mean), Y,.jk, and variance, V,-jk) can be
obtained using Egs. (12-13):

4

Vi = O hPr(Yy = by 6, 7); (12)
h=0
4
Vi = 2 [h = Yl Pr(¥y = ks 6, Hy). (13)
h=0

Assuming that within an individual the concentration-
response relationship post-remedication does not differ sig-
nificantly from pre-remedication, the probabilities of having
specific PR scores post-remedication can be obtained from
Eqgs. (4-10). The PR scores post-remedication can then be
predicted from the post-remedication probabilities using Eq.
(13).

The prediction and variance of the PR score for each
treatment can be obtained using Eqs. (14-15), respectively:

fanl

A 1 .
Yi = I Yius (14)
J
i=1
1 <&
Vie =7 2, Yy — Yk (15)

T

C

It

The (pure) drug effect and corresponding variance can be
estimated using Eqs. (16—17), respectively:

Vi(drug) = ¥ — Yiplacebo); (16)
f/jk(drug) = f/jk + f/k(placebo). 17)

Because PR scoring is an artificial system (i.e., one may
choose any ordinal scores instead of the present scores), we
use the term ‘‘prediction’ instead of ‘‘expectation’ for the
first moment. Further, given the present artificial PR scoring
system of 0, 1, 2, 3, and 4, it is desirable to know whether the
pre-remedication predictions match the observed PR scores.
Note that post-remedication predictions do not have corre-
sponding observations. To rationalize the scoring system,
with respect to the proposed estimation, we suggest using

Table II. Parameter Estimates

Parameter Estimate Parameter Estimate
k,,(h™Y) 3.03 a, 8.40
0, 8.47 05 -5.96
0, 2.47 06 (h) 0.55
0, 1.42 0, -8.75
2.82 05 (ng/ml) 945
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Fig. 3. Pre-remedication probability (z-axis) of having specific pain relief scores as a function of time (x-axis) and dose (y-axis). Upper
left panel: pain relief score = 1, upper right panel: pain relief score = 2, lower left panel: pain relief score =3, and lower right panel: pain
relief =4. Censoring, due to remedication, makes surfaces rise and fall, particularly with respect to placebo and at later times where
dropouts are more prevalent.
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Fig. 4. Overall (pre- and post-remedication) probability (z-axis) of having specific pain relief scores as a function of time (x-axis) and
dose (y-axis). Upper left panel: pain relief score =1, upper right panel: pain relief score =2, lower left panel: pain relief score =3, and
lower right panel: pain relief score=4.
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Table III. Observed and Predicted PR Scores After a Single Dose of the Analgesic and Prior to Remedication

Time (h)
Dose

Level 0.25 0.50 0.75 1.00 1.50 2.00 3.00 3.50 4.00 5.00 6.00
n* 36 36 36 36 18 14 7 6 6 6 6

Placebo Observed 0.17 0.42 0.72 0.72 1.50 1.71 3.00 3.50 3.50 3.50 3.33
s.e.T 0.09 0.14 0.16 0.16 0.29 0.38 0.47 0.24 0.24 0.24 0.37
Predicted 0.36 0.50 0.60 0.67 1.53 1.87 2.76 3.04 3.07 3.12 3.15
s.€. 0.12 0.14 0.16 0.17 0.25 0.29 0.38 0.32 0.31 0.31 0.30
n¥* 35 35 35 35 29 25 19 16 12 11 11

1 unit Observed 0.26 0.80 1.77 1.77 2.52 2.56 2.47 2.56 2.50 2.45 2.36
s.€. 0.10 0.18 0.22 0.22 0.23 0.26 0.32 0.36 0.44 0.41 0.45
Predicted 0.42 0.93 1.40 1.67 2.22 2.38 2.43 2.42 2.51 2.40 2.39
s.e. 0.09 0.14 0.18 0.20 0.18 0.19 0.21 0.24 0.31 0.33 0.33
n* 36 36 36 35 34 34 31 30 26 24 20

2 units Observed 0.47 1.11 2.44 2.51 3.00 3.21 3.06 2.97 3.27 3.08 3.10
s.e. 0.14 0.18 0.18 0.17 0.15 0.14 0.16 0.23 0.17 0.21 0.16
Predicted 0.48 1.41 2.18 2.61 3.09 3.08 2.97 2.82 2.88 2.76 2.87
s.e. 0.11 0.16 0.18 0.16 0.13 0.13 0.14 0.15 0.14 0.15 0.12
n* 35 35 35 35 32 32 3 28 24 18 17

4 units Observed 0.51 1.49 2.49 2.49 3.06 3.25 3.13 3.11 3.21 3.22 3.18
s.€. 0.15 0.21 0.22 0.22 0.18 0.14 0.20 0.22 0.20 0.20 0.20
Predicted 0.59 1.44 2.20 2.71 3.18 3.22 2.97 2.95 3.03 3.05 2.94
s.e. 0.11 0.19 0.21 0.21 0.16 0.14 0.16 0.16 0.14 0.13 0.14

n*: number of individuals under observation.

s.e.T: standard error.

pormal-based tests (note that in analgesic clinical trials the ILLUSTRATION

total number of observed PR scores which are equal to a
given score is usually large) with the null hypothesis
Ho:E(Yulyix=m) — m = 0, and the following posterior
mean and standard error [cf. Tanner (6) and Geweke (7)]:

B(Pyc | Y = m) = (¥ | Ve = m)lc [ Zhye  (18)
and

se.(Tiu | yiue = m) =

VY | vhe = m) =BTy | v = mP - BJ/Zl,, (19)

in whichm = 0,1, 2, 3, 4.

PR
005115225335

2 3
Y .““\0 k“\

A study of an investigational analgesic agent included
143 individuals randomized to one of three active treatments
or placebo. Table I lists the number of subjects who were
evaluated prior to remedication in each treatment.

Twelve-hundred and ten plasma concentrations col-
lected during the three active treatments are shown in Fig. 1.
The observed PR score versus plasma concentration at each
time point, pre-remedication only, is shown in Fig. 2. Note
the counter-clockwise hysteresis indicating delay between
plasma concentration and effect.

Table II provides the mean estimates of the parameters,
based on 1,134 pre-remedication effect observations, includ-
ing 207 placebo observations.

As one might expect, the predicted cumulative proba-

PR
005115225335

2 3
Y .‘-\“\e \“\

Fig. 5. Predicted pain relief score (z-axis) as a function of time (x-axis) and dose (y-axis), prior to remedi-
cation (left panel). The circles show corresponding mean observations. Censoring, due to remedication,
makes the surface rise and fall, particularly with respect to placebo and at later times where dropouts were
more prevalent. The right panel shows the comparable predictions overall (pre- and post-remedication).
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Table IV. Overall (Pre- and Post-Remedication) Predicted PR Scores After a Single Dose of the Analgesic
Time (h)
Dose
Level 0.25 0.50 0.75 1.00 1.50 2.00 3.00 3.50 4.00 5.00 6.00
n* 36 36 36 36 36 36 36 36 36 36 36
Placebo Predicted 0.36 0.50 0.60 0.67 0.77 0.83 0.90 0.92 0.94 0.97 0.98
s.e.t 0.12 0.14 0.16 0.17 0.18 0.19 0.20 0.20 0.20 0.20 0.21
n* 35 35 35 35 35 35 35 35 35 35 35
1 unit Predicted 0.41 0.90 1.36 1.63 1.81 1.81 1.69 1.61 1.55 1.49 1.47
s.e. 0.09 0.14 0.18 0.20 0.21 0.21 0.20 0.20 0.19 0.19 0.19
n* 36 36 36 36 36 36 36 36 36 36 36
2 units Predicted 0.48 1.41 2.18 2.61 2.93 2.93 2.74 2.59 2.43 2.19 2.04
s.e. 0.11 0.16 0.18 0.17 0.16 0.17 0.16 0.16 0.16 0.17 0.17
n* 35 35 35 35 35 35 35 35 35 35 35
4 units Predicted 0.59 1.44 2.20 2.64 2.94 3.00 2.78 2.60 2.45 2.26 2.15
s.€. 0.11 0.19 0.21 0.21 0.20 0.18 0.19 0.19 0.20 0.20 0.20

n*: number of individuals under observation.
s.e.t: standard error.

bility of having positive PR scores in association with pre-
remedication (Fig. 3) is greater than that which would be
predicted if all patients continued to be observed (Fig. 4).
This observation is particularly evident at later times, and in
the placebo group, where dropouts are more prevalent.

Table III lists the observed and predicted PR scores pre-
remedication, and the left panel of Fig. 5 shows the predic-
tions of the model relative to the data. The overall (pre- and
post-remedication) predictions are listed in Table VI, and the
right panel of Fig. S shows the overall response surface.

Fig. 6 shows the (pure) drug effect based on the out-
comes listed in Table IV. It is apparent that the drug effect of
1 unit is greater than the placebo effect, and the drug effect
of 2 or 4 units is greater than that of 1 unit. The drug effect
of 4 units could not, however, be distinguished from that of
2 units.

To judge the PR scoring, Table V shows the posterior

arguments obtained using Egs. (19-20). Using proposed ap-
proach, generally speaking, PR scores lower than 2 would be
slightly overestimated, and those higher than 2 would be
slightly underestimated. Inferenced by its standard error, the
difference between any given PR scores and corresponding
posterior expectation was not statistically significant. Con-
sidering the complexity of analyzing analgesic clinical trials,
those non-significantly shifted E(¥,ly%,=m) suggest that
both the scoring system and the proposed methods are rea-
sonable.

DISCUSSION

The first new aspect we introduced in the paper, empir-
ical convolution, can be a useful tool in pharmacodynamic
studies. It is an informative optimization due to the fact that
it depends on observed concentrations without any transfor-

25

20

1.5

1.0

05

0.0

Time (h)

Time (h)

Time (h)

Fig. 6. Predicted (solid line) and 95% confidence region (bounded by dashed lines) of pure drug
effect, the difference between the effect of active treatment and that of placebo treatment, versus
time. Left panel: 1 unit dose, middle panel: 2 unit dose, and right panel: 4 unit dose. As can be seen
by comparing mean response and confidence bounds, the responses of the lowest dose (at
comparable time points) differ significantly from those of the other two doses, but the two higher
doses do not differ significantly from each other.
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Table V. Posterior Arguments for PR Scoring Sample Size, Posterior Mean, and Standard Error

m
Argument 0 1 2 3 4
n,, 267 160 148 327 232
E(Py |yl =m) 0.120 1.172 1.981 2.835 3.691
s.e.(Ty | i = m) 0.163 0.296 0.214 0.294 0.264

mation. It is particularly useful when the convolution can not
be carried out in a conventional way without an explicit
function (e.g., a compartmental model) to describe the
plasma concentration-time relationship, for example, when
the plasma concentration-time profile is erratic (i.e., multiple
peaks). However, if the sampling schedule is such that neigh-
boring concentrations are too far apart in a critical region
(e.g., before and after the peak), the empirical convolution
may carry significant biases.

As mentioned in the introduction, we focused our in-
vestigation on data in which observed plasma concentrations
are not censored. Because of the local, rather than global,
nature of empirical convolution, this approach would not be
appropriate when both plasma concentration and response
are right-hand censored due to remedication. In this case, an
alternative is using empirical convolution based on uncen-
sored data for obtaining Ce(?) pre-remedication, and then
modeling Ce(t), which is smoother than observed C(¢), with
a global approach (e.g., a Bateman function) to obtain pre-
dictions at time points post-remedication. We have had some
experience using this technique on analgesic data which in-
volved erratic concentrations and censoring of both concen-
tration and response, and achieved reasonable results.

The logit we used in this paper, Eq. (8), includes a sat-
urable contribution of time and another for Ce. A general
form of a logit for analyzing analgesic clinical trials is
32710,,0,0) + £i(t, 09) + f(Cel(t), 87) + m, in which n
is the number of response category, 8/”, 8 and = are vec-
tors, £7216,,0,.0) + f,(t, 8?) determines the contribution
to the logit from the placebo effect, f,(Ce(r), ') determines
that from the (pure) drug effect, and n represents interindi-
vidual variation. Different types of f, and f, should be con-
sidered for different types of data. We have used Emax (sat-
uration)-type models for both f; and £, in our analysis. Be-
cause f, and f, are included in the logit, which has a similar
(saturable) nature to it, other functions [such as a power
function of ¢ or Ce(#)] might be as good or better. We plan to
investigate this aspect in our future work. In Sheiner’s paper
(2), variability depends on time. We suggest that the require-
ment for this dependence on time may be due, in-part, to
misspecification of the placebo model. With finite values,
according to Egs. (5-10), any logit can not produce 100%
probability for having a single PR score. Therefore, from Eq.
(13), even though an observed PR score may be zero, the
prediction will always be greater than zero. Likewise, the
prediction will always be less than 4 for an observed PR
score of 4. This fact may help to explain the slightly shifted,
but not significantly biased, expectations shown in Table V.

Obtaining predictions for the placebo treatment is an
important component of the overall estimation, as it pro-
vides us the information needed to evaluate pure drug effect.

Although the censoring in response is informative, the large
degree to which it occurs in the placebo group requires that
sample size considerations for this group be conservative.
For the example data in this paper, 6 of 36 placebo recipients
completed all evaluations with coefficients of variation less
than 30% at later times, and simultaneous modeling was able
to be applied without a problem. In the case where placebo
data does not support simultaneous modeling, a stepwise
method, i.e., modeling the placebo effect first, then the ac-
tive drug effect with the placebo parameter estimates fixed,
is a reasonable approach.

Using the first two moments, predicted PR scores with
corresponding standard errors for each dose group at each
time point are obtainable. The importance of these predic-
tions and standard errors lies in their ability to enable com-
parisons of response among different dose groups to be
made, for example, to demonstrate drug efficacy and to
make various claims (e.g., onset of action).

In summary, we have introduced several new aspects to
modeling analgesic clinical trials. One aspect, the empirical
convolution, has more general applicability to pharmacoki-
netic-pharmacodynamic data because it can also be used
when the pharmacodynamic data are continuous. The other
aspects have general applicability, but to data with ordered
categorical response. Further, we have demonstrated that
reasonable results may be achieved when using these tech-
niques on real data.

APPENDIX

Empirical Convolution: From Integral to Summation

Let

ij(t) = o t Bijkt: Ljk-1) S S Lk (A.1)
be the plasma concentration in the i-th individual, i = 1, 2,
-, I, of the j-th dose level,j = 1, 2, -+, J, between the (k —
1)-th and k-th sample time, k = 1,2, -+, K;, with 7,0 = 0 and
g0 = Byo = 0, and

¢“ ) = {0, 1= tij(k—l),
v logie — aju-nl + [Byx — Bywe—nlt, > tig-1)-
(A.2)
It yields the following function:
k
CiD) = 2, (@), (A.3)

h=1
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for t;, 1y <t < ty. Thus, we have the following convolu-
tion for 1, ) <t < ty:

Ceit) = keo fo " Cy(s)expl—keo(t — 5)lds

k
= keo [ > din(s)expl—keolt — 5)lds
h=1

k
= keo D ﬁ) " dyu(s)expl—keot — $Ids. (A.4)

h=1
We also have the following results of integrals for f;,_,, <t
<ty
| T = e nlexpl—keolt = $)Ids =

logn — ajjo—)H{1 — expl—keolt — tijn-1)litkeo (A.5)

and

jo “[Bijn — Bin—nlt expl—keolt — 5)lds =

Bir — Byh-1lkeo t — 1 — (keo tyjn—1y — 1)
expl—keo(t — tin—1)IVkZ,, (A.6)

By inserting (A.5) and (A.6) to (A.4), for 1, _,, Sy < ty, it
yields the equation (4):

Cei(t) = keo fo ! Cy(s)expl—keolt — $))ds

{eigh — i1yl — expl—keolt — tijn-1)1}

k
=1

h
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+ [Bijr — Bijr—n)lHkeo t = 1 — (keo tijn-1y — 1
expl—keolt — tijon—1)Mkeo}. 4)

Therefore, equation (4) is an exact expression of the convo-
lution.
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